Dioctyl sulfosuccinate, Na-salt
Dioctyl sulfosuccinate is of major importance in the reverse micellar solubilization of biomolecules like proteins, peptides, amino acids and, in particular, enzymes. It is even possible to solubilize whole bacteria cells.
The concept of reverse micellar solubilization with dioctyl sulfosuccinate is based on its property of aggregating in organic solvents like isooctane and forming micelles with a reverse orientation so that e.g. proteins, dissolved in water, may be enclosed. The selectivity of this process can be controlled.
A whole range of enzymes – e.g. tyrosinases, lipoxygenases, lipases and catalases – has already been investigated in dioctyl sulfosuccinate reverse micelles.
The reverse micellar solubilization with dioctyl sulfosuccinate is extraordinarily interesting for biotechnological applications.
Synonyms: Aerosol, OT, AOT, Bis(2-ethylhexyl)sodium sulfosuccinate, Docusat sodium
CAS registry number: [577-11-7]
Molecular formula: C20H37O7S . Na
Relative molecular mass (Mr): 444.6
Classification: Anionic surfactant
Literature specification:
• Critical micellar concentration (CMC): 0.6 mM
Bibliography
Solubilization of Enzymes in Reverse Micelles
Rahaman, R.S., Chee, J. Y., Cabral, J.M.S. a. Hatton, T.A. (1988) Recovery of an extracellular alkaline protease from whole fermentation broth using reversed micelles. Biotechnol. Prog. 4, 218-24.
Bru, R., Sanchez-Ferrer, A. a. Garcia-Carmona, F. (1989) Characteristics of tyrosinase in AOT-isooctane reverse micelles. Biotechnol. Bioeng. 34, 304-8.
Bru, R., Sanchez-Ferrer, A. a. Garcia-Carmona, F. (1989) Characterization of cholesterol oxidase activity in AOT-isooctane reverse micelles and its dependence on micelle size. Biotechnol. Lett 11, 237-42.
Escobar, L., Salvador, C., Contreras, M. a. Escamilla, J.E. (1989) On the application of the Clark oxygen electrode to the study of enzyme kinetics in apolar solvents: the catalase reac-tion. Anal. Biochem. 184, 139-44.
Ferreira, S.T. a. Verjovski-Almeida, S. (1989) Fluorescence decay of sarcoplasmic reticulum ATPase. Ligand binding and hydration effects. Biol. Chem. 264, 15392-7.
Kabanov, A.V., Nametkin, S.N., Evtushenko, G.N., Chernov, N.N., Klyachko, N.L.,
Levashov, A. V. a. Martinek, K. (1989) A new strategy for the study of oligomeric enzymes: y-glutamyltransferase in reversed micelles of surfactants in organic solvents. Biochim. Biophys. Acta 996, 147-52.
Plucinski, P. a. Nitsch, W. (1989) Two-phase kinetics of the solubilization in reverse micelles-extraction of lysozyme. Ber. Bunsen-Ges. Phys. Chem. 93, 994-7.
Shapiro, YE., Budanov, N.A., Levashov, A.V., Klyachko, N.L., Khmelnitskii, Y.L. a. Martinek, K. 1989) Carbon-13 NMR of study of entrapping proteins (a-chymotrypsin) into reversed micelles of surfactants (Aerosol OT) in organic solvents (n-octane). Collect. Czech. Chem. Commun. 54, 1126-34.
Hayes D.G. a. Gulari, E. (1990) Esterification reactions of lipase in reverse micelles. Biotechnol. Bioeng. 35, 793-801.
Tyrakowska, B., Verhaert, R.M.D., Hilhorst, R. a. Veeger, C. (1990). Enzyme kinetics in reversed micelles. 3. Behavior of 20ß-hydroxysteroid dehydrogenase. Eur. J. Biochem. 187, 81-8.
Verhaert, R.M.D., Tyrakowska, B., Hilhorst, R., Schaafsma, T.J. a. Veeger, C. (1990) Enzyme kinetics in reversed micelles. 2. Behavior of enoate reductase. Eur. J. Biochem. 187, 73-9
Brissos, V. et al.(2008) Biochemical and structural characterization of cutinase mutants in the presence of the anionic surfactant AOT. Biochim. Biophys. Acta 1784, 1326-34.
Badenes, S.M. et al. (2011) Stability of cutinase, wild type and mutants, in AOT reversed micellar system – effect of mixture components of alkyl esters production. J. Chem. Technol. Biotechnol. 86, 34-41.
Solubilization of Amino Acids, Peptides and Proteins in Reverse Micelles
Ebert, G., Plachky, M., Seno, M. a. Noritomi, H. (1988) Studies on the conformation of poly-peptides in reverse micelles. Prog. Colloid. Polym. Sci. 77, 67-71.
Ebert, G., Plachky, M., Seno, M. a. Shoji, S. (1988) Studies on the solubilization of basic polypeptides in reversed micelles by ultracentrifuge measurements. Prog. Colloid. Polym. Sci. 76, 113-118.
Fadnavis, N.W., Reddy, N.P. a. Bhalerao, U.T. (1989) Reverse micelles, an alternative to aqueous medium for microbial reactions: yeast mediated resolution of amino acids in reverse micelles. J. Org. Chem. 54, 3218-21.
Hatton, TA. A. Woll, J.M. (1989) A simple phenomenological thermodynamic model for protein partitioning in reversed micellar systems. Bioprocess Eng. 4, 193-9.
Leser, M.E. a. Luisi, P.L. (1989) Liquid 3-phase micellar extraction of peptides. Biotechnol. Tech. 3, 149-54.
Ranganathan, D., Singh, G.P. a. Ranganathan, S., (1989) Peptide bond formation at the micellar interface. J. Am. Chem. Soc. 111, 1144-5.
Vacher, M., Waks, M. a. Nicot, C. (1989) Myelin proteins in reverse micelles: tight lipid association required for insertion of the Folch-Pi proteolipid into a membrane-mimetic system. J. Neurochem. 52, 117-23.
Furusaki, S. a. Kishi, K. (1990) Extraction of amino acids by reversed micelles. J. Chem. Eng. Jpn. 23, 91-3.
Solubilzation of Cells/Cell Organells in Reverse Micelles
Haering, G., Pessina, A., Meussdoerffer, F., Hochkoeppler, S. a. Luisi, P.L. (1987) Solubilization of bacterial cells in organic solvents via reverse micelles and micro-emulsions. Ann. N.Y. Acad. Sci. 506, 337-44.
Hochkoeppler, A. a. Luisi, P.L. (1989) Solubilization of soybean mitochondria in AOT/isooctane water-in-oil microemulsions. Biotechnol. Bioeng. 33, 1477-81.
Further Applications
Park, J.-G. et al. (2009) Synthesis of colloidal particles with the symmetry of water molecules. Langmuir 25, 8903-6.